Comparison between Fuzzy Sliding Mode and Traditional IP Controllers in a Speed Control of a Doubly Fed Induction Motor

Youcef Bekakra and Djillani Ben Attous, Non-members

ABSTRACT

Many industrial applications require new control techniques in order to obtain fast response and to improve the dynamic performances. One of the techniques users, fuzzy sliding mode control which is characterized by robustness and insensitivity to the parameters variation. In this paper, we present a comparative study of a direct stator flux orientation control of doubly fed induction motor by two regulators: traditional IP controller and fuzzy sliding mode. The three regulators are applied in speed regulation of doubly fed induction motor (DFIM). The robustness between these two regulators was tested and validated under simulations with the presence of variations of the parameters of the motor, in particular the face of disturbances of load torque. The results show that the fuzzy sliding mode controller has best performance than the traditional IP controller.

Keywords: Doubly Fed Induction Motor, Direct Stator Flux Orientation Control, Fuzzy Sliding Mode Controller, Fuzzy-PI, IP Controller.

Nomenclature

\(i_{rd}, i_{rq} \) : rotor current components
\(\phi_{sd}, \phi_{sq} \) : stator flux components
\(V_{sd}, V_{sq} \) : stator voltage components
\(V_{rd}, V_{rq} \) : rotor voltage components
\(R_s, R_r \) : stator and rotor resistances
\(L_s, L_r \) : stator and rotor inductances
\(M \) : mutual inductance
\(\sigma \) : leakage factor
\(p \) : number of pole pairs
\(C_e \) : electromagnetic torque
\(C_r \) : load torque
\(J \) : moment of inertia
\(\Omega \) : mechanical speed
\(\omega_s, \omega \) : stator pulsation
\(f \) : friction coefficient
\(T_s, T_r \) : statoric and rotoric time-constant
\(k_{V_{rd}}, k_{V_{rq}} \) : positive constants
\(e \) : speed error
\(x \) : state vector
\(x_d \) : desired state vector
\(S, \sigma(x, t) \) : sliding surface
\([\cdot]^T \) : transposed vector
\(u \) : control vector
\(u^{eq} \) : equivalent control vector
\(u^n \) : switching part of the control
\(k_f \) : controller gain
\(\lambda \) : positive coefficient
\(n \) : system order
\(\eta \) : positive constant.

1. INTRODUCTION

The doubly fed induction machine (DFIM) is a very attractive solution for variable-speed applications such as electric vehicles and electrical energy production. Obviously, the required variable-speed domain and the desired performance depend on the application. The use of a DFIM offers the opportunity to modulate power flow into and out the rotor winding. In general, when the rotor is fed through a cycloconverter, the power range can reach the order of megawatts-a level usually confined to synchronous machines [1]. The DFIM has some distinct advantages compared to the conventional squirrel-cage machine. The DFIM can be fed and controlled stator or rotor by various possible combinations. Indeed, the input-commands are done by means of four precise degrees of control freedom relatively to the squirrel cage induction machine where its control appears quite simpler. The flux orientation strategy can transform the non linear and coupled DFIM-mathematical model to a linear model conducting to one attractive solution as well as under generating or motoring operations [2].

Several methods of control are used to control the induction motor among which the vector control or field orientation control that allows a decoupling between the torque and the flux, in order to obtain an independent control of torque and the flux like DC motors [3].

The overall performance of field-oriented-controlled induction motor drive systems is directly related to the performance of current control. Therefore, decoupling the control scheme is required by compensation of the coupling effect between q-axis and d-axis current dynamics [3].

With the field orientation control (FOC) method,
induction machine drives are becoming a major candidate in high-performance motion control applications, where servo quality operation is required. Fast transient response is made possible by decoupled torque and flux control [4].

Fuzzy logic has proven to be a potent tool in the sliding mode control of time-invariant linear systems as well as time-varying nonlinear systems. It provides methods for formulating linguist rules from expert knowledge and is able to approximate any real continuous system to arbitrary accuracy. Thus, it offers a simple solution dealing with the wide range of the system parameters. All kinds of control schemes, including the classical sliding mode control, have been proposed in the field of AC machine control during the past decades [5].

Among these different proposed designs, the sliding mode control strategy has shown robustness against motor parameter uncertainties and unmodelled dynamics, insensitivity to external load disturbance, stability and a fast dynamic response [6]. Hence it is found to be very effective in controlling electric drives systems. Large torque chattering at steady state may be considered as the main drawback for such a control scheme [6]. One way to improve sliding mode controller performance is to combine it with Fuzzy Logic (FL) to form a Fuzzy Sliding Mode (FSM) controller [7].

In this paper, we treat direct stator flux orientation control (DSFOC) of doubly fed induction motor with two types of regulators, the IP and fuzzy sliding mode controller.

2. THE DFIM MODEL

Its dynamic model expressed in the synchronous reference frame is given by voltage equations [2]:

\[u_s = R_s i_s + \frac{d\phi_s}{dt} + j\omega_s \phi_s \]
\[u_r = R_r i_r + \frac{d\phi_r}{dt} + j\omega_r \phi_r \]

(1)

Flux equations:

\[\ddot{\phi}_s = L_s \dot{i}_s + M \dot{i}_r \]
\[\ddot{\phi}_r = L_r \dot{i}_r + M \dot{i}_s \]

(2)

From (1) and (2), the state-all-flux model is written like:

\[\dot{u}_s = \frac{1}{\sigma T_s} \ddot{\phi}_s - \frac{M}{\sigma T_s L_r} \dot{\phi}_r + \frac{d\phi_s}{dt} + j\omega_s \phi_s \]
\[\dot{u}_r = -\frac{M}{\sigma T_r L_s} \ddot{\phi}_s + \frac{1}{\sigma T_r} \dot{\phi}_r + \frac{d\phi_r}{dt} + j\omega_r \phi_r \]

(3)

The electromagnetic torque is done as:

\[C_e = \frac{PM}{\sigma L_s L_r} 3m[\dot{\phi}_s \dot{\phi}_r] \]

(4)

and its associated motion equation is:

\[C_e - C_r = J \frac{d\Omega}{dt} \]

(5)

3. DIRECT STATOR FLUX ORIENTATION CONTROL

In this section, the DFIM model can be described by the following state equations in the synchronous reference frame whose axis d is aligned with the stator flux vector, [8], [9]:

\[\dot{i}_{rd} = \frac{\phi_s^*}{M} \]
\[\dot{i}_{rq} = -\frac{L_s}{P.M \phi_s^*} C_e \]
\[\frac{d\theta_s}{dt} = \omega_s = \left(\frac{R_e M}{L_s} \right) \dot{i}_{rq} + V_{sq} / \phi_s^* \]

(6)

\[\dot{i}_{rd} = -\frac{1}{\sigma} \left(\frac{1}{T_r} + \frac{M^2}{L_s T_s L_r} \right) \dot{i}_{rd} - \frac{M}{\sigma L_r L_s} V_{sd} \]
\[\dot{i}_{rq} = \frac{M}{\sigma L_r L_s T_s} \dot{i}_{rs} + \left(\omega_s - \Omega \right) \dot{i}_{rq} + \frac{1}{\sigma L_r} V_{rd} \]

(7)

\[\dot{i}_{rq} = -\frac{1}{\sigma} \left(\frac{1}{T_r} + \frac{M^2}{L_s T_s L_r} \right) \dot{i}_{rq} - \frac{M}{\sigma L_r L_s} V_{sq} \]
\[\dot{\phi}_{sq} = \frac{M}{\sigma L_r L_s} \Omega \phi_{sd} - \left(\omega_s - \Omega \right) i_{rd} + \frac{1}{\sigma L_r} V_{rd} \]

(8)

(9)

(10)

(11)

(12)

\[\dot{\phi}_s^* = V_{sd} + \frac{M}{T_s} \dot{i}_{rd} - \frac{1}{T_s} \phi_{sd} \]
\[\dot{\phi}_{sq} = V_{sq} + \frac{M}{T_s} \dot{i}_{rq} - \omega_s \phi_{sd} \]
\[\dot{\Omega} = \frac{P.M (i_{rq} \phi_{sd}) - C_r}{J - \frac{f}{J} \dot{\Omega}} \]

(13)

With:

\[T_r = \frac{L_r}{R_r} \]
\[T_s = \frac{L_s}{R_s} \]
\[\sigma = 1 - \frac{M^2}{L_s L_r} \]

(14)

4. STATOR FLUX ESTIMATOR

For the DSFOC of DFIM, accurate knowledge of the magnitude and position of the stator flux vector is necessary. In a DFIM motor mode, as stator and rotor current are measurable, the stator flux can be estimated (calculate). The flux estimator can be obtained by the following equations [10]:

\[\phi_{sd} = L_s i_{sd} + M i_{rd} \]
\[\phi_{sq} = L_s i_{sq} + M i_{rq} \]

(15)

The position stator flux is calculated by the following equations:

\[\theta_s = \theta_s - \theta \]

(16)

In which:

\[\theta_s \int \omega_s dt, \theta = \int \omega dt, \omega = P \Omega. \]

Where:

- \(\theta_s \) is the electrical stator position,
- \(\theta \) is the electrical rotor position.

5. SLIDING MODE CONTROL

A Sliding Mode Controller (SMC) is a Variable Structure Controller (VSC). Basically, a VSC includes several different continuous functions that can map plant state to a control surface, whereas switching among different functions is determined by plant state represented by a switching function [10].

The design of the control system will be demonstrated for a following nonlinear system [11]:

\[\dot{x} = f(x, t) + B(x, t) u(x, t) \]

(17)

Where \(x \in \mathbb{R}^n \) is the state vector, \(f(x, t) \in \mathbb{R}^n, B(x, t) \in \mathbb{R}^{n \times m} \) and \(u \in \mathbb{R}^m \) is the control vector. From the system (17), it is possible to define a set of the state trajectories \(x \) such as:

\[S = \{ x(t) | \sigma(x, t) = 0 \} \]

(18)

Where:

- \(\sigma(x, t) = [\sigma_1(x, t), \sigma_2(x, t), \ldots, \sigma_n(x, t)]^T \)

(19)

and \([\cdot]^T\) denotes the transposed vector, \(S \) is called the sliding surface.

To bring the state variable to the sliding surfaces, the following two conditions have to be satisfied:

\[\sigma(x, t) = 0, \quad \dot{\sigma}(x, t) = 0 \]

(20)

The control law satisfies the precedent conditions is presented in the following form:

\[u = u^{eq} + u^n \]

\[u^n = -k_f sgn(\sigma(x, t)) \]

(21)

Where \(u \) is the control vector, \(u^{eq} \) is the equivalent control vector, \(u^n \) is the switching part of the control (the correction factor), \(k_f \) is the controller gain. \(u^{eq} \) can be obtained by considering the condition for the sliding regimen, \(\sigma(x, t) = 0 \). The equivalent control keeps the state variable on sliding surface, once they reach it.

For a defined function \(\varphi \) [12], [13]:

\[sgn(\varphi) = \begin{cases}
1, & \text{if } \varphi > 0 \\
0, & \text{if } \varphi = 0 \\
-1, & \text{if } \varphi < 0
\end{cases} \]

(22)

The controller described by the equation (21) presents high robustness, insensitive to parameter fluctuations and disturbances, but it will have high-frequency switching (chattering phenomena) near the sliding surface due to function involved. These drastic changes of input can be avoided by introducing a boundary layer with width \(\varepsilon \) [14]. Thus replacing \(sgn(\sigma(t)) \) by \(sat(\sigma(t)/\varepsilon) \) (saturation function), in (21), we have:

\[u = u^{eq} - k, sat(\sigma(x, t)) \]

(23)

Where \(\varepsilon > 0 \).

\[sat(\varphi) = \begin{cases}
sgn(\varphi), & \text{if } |\varphi| \geq \varepsilon \\
0, & \text{if } |\varphi| < \varepsilon
\end{cases} \]

(24)

Consider a Lyapunov function [12]:

\[V = \frac{1}{2} \sigma^2 \]

(25)

From Lyapunov theorem we know that if \(\dot{V} \) is negative definite, the system trajectory will be driven and attracted toward the sliding surface and remain sliding on it until the origin is reached asymptotically [14]:

\[\dot{V} = \frac{1}{2} \frac{d}{dt} \sigma^2 = \sigma \dot{\sigma} \leq -\eta |\sigma| \]

(26)

Where \(\eta \) is a strictly positive constant.

In this paper, we use the sliding surface proposed par J.J. Slotine:

\[\sigma(x, t) = \left(\frac{d}{dt} + \lambda \right)^{n-1} e \]

(27)

Where:

\[x = [x, \dot{x}, \ldots, x^{n-1}]^T \]

is the state vector, \(x_d = [x_d, \dot{x}_d, \ldots, x_d] \) is the desired state vector, \(e = x_d - x = [e, \dot{e}, \ldots, e^{n-1}] \) is the error vector, and \(\lambda \) is a positive coefficient, and \(n \) is the system order.

6. SPEED CONTROL WITH SMC

The speed error is defined by:

\[e = \Omega_{ref} - \Omega \]

(28)

For \(n = 1 \), the speed control manifold equation can be obtained from equation (27) as follow:

\[\sigma(\Omega) = e = \Omega_{ref} - \Omega \]

(29)

\[\dot{\sigma}(\Omega) = \dot{\Omega}_{ref} - \dot{\Omega} \]

(30)

Substituting the expression of equation (13) in equation (30), we obtain:
\[\dot{\Omega} = \Omega_{ref} - \left(-\frac{P.M}{J.L_s} (i_{rq},\phi_{sd}) - \frac{C_r}{J} - \frac{f}{J} \Omega \right) \]

(31)

We take:

\[i_{rq} = i_{rq}^e + i_{rq}^n \]

(32)

During the sliding mode and in permanent regime, we have:

\[\sigma(\Omega) = 0, \dot{\sigma}(\Omega) = 0, i_{rq}^n = 0 \]

Where the equivalent control is:

\[i_{rq}^e = -\frac{J.L_s}{P.M.\phi_{sd}} \left(\Omega_{ref} + \frac{C_r}{J} + \frac{f}{J} \Omega \right) \]

(33)

Therefore, the correction factor is given by:

\[i_{rq}^n = k_{i_{rq}} \text{sat}(\sigma(\Omega)) \]

(34)

7. FUZZY SLIDING MODE CONTROL

7.1 Speed Control

The disadvantage of sliding mode controllers is that the discontinuous control signal produces chatter dynamics; chatter is aggravated by small time delays in the system. In order to eliminate the chatter phenomenon, different schemes have been proposed in the literature [7]. Another approach to reduce the chatter phenomenon is to combine (Fuzzy Logic) FL with a Sliding Mode control (SMC) [13]. Hence, a new Fuzzy Sliding Mode (FSM) controller is formed with the robustness of SMC and the smoothness of FL. The fuzzy sliding mode control combines the advantages of the two techniques [15] (SMC and FL). The control by fuzzy logic is introduced here in order to improve the dynamic performances of the system and makes it possible to reduce the residual vibrations in high frequencies [15] (chattering phenomenon). The switching functions of sliding mode and FSM schemes are shown in Fig. 1. In this technique, the saturation function is replaced by a fuzzy inference system to smooth the control action. The block diagram of the hybrid fuzzy sliding mode controller is shown in Fig. 2.

Fig. 3 shows the Speed fuzzy sliding mode controller detailed.

7.2 Synthesis of the Fuzzy-PI Regulator

With this intention, we take again the internal diagram of the fuzzy regulator as shown in Fig. 3. We have:

\[u = K_s.S \]

(35)

Or:

\[S = k_{i_{rq}} \text{sat}(S(\Omega)) \]

(36)

Substituting the equation (36) in equation (35), we obtain:

\[u = K_s.k_{i_{rq}}.\text{sat}(S(\Omega)) \]

(37)

The Fuzzy-PI output is:

\[y = k_p.u + \int k_i.u \]

(38)

Substituting the equation (37) in equation (38), we obtain:

\[y = K_p.(K_s.k_{i_{rq}}.\text{sat}(S(\Omega))) + \int K_i. (K_s.k_{i_{rq}}.\text{sat}(S(\Omega))) \]

(39)

Where: \(K_s \) is the gain of the speed surface, \(K_p \) is the proportional factor; \(K_i \) is the integral factor, \(k_{i_{rq}} \) is a negative constant, \(u \) is the fuzzy output, \(S(\Omega) \) is the speed surface.

The membership functions for the input and output of the Fuzzy-PI controller are obtained by trial error to ensure optimal performance and are shown in Fig. 4.

The If-Then rules of the fuzzy logic controller can be written as [7]:

\[\text{If } S \text{ is } \text{positive}, \text{Then } u \text{ is } \text{positive} \]

\[\text{If } S \text{ is } \text{negative}, \text{Then } u \text{ is } \text{negative} \]
7.3 Law of Control

The structure of a fuzzy sliding mode controller as a sliding mode controller comprises two parts: the first relates to the equivalent control u^{eq} and the second is the correction factor u^n, but into the case of a fuzzy sliding mode controller we introduce the fuzzy logic control into this last part u^n.

We have the equation (33):

$$i_{eq}^{n} = -\frac{JL_s}{P.M.\phi_{sd}} \left(\Omega_{ref} + \frac{C_r}{J} + \frac{f}{J} \Omega \right)$$

and we have of Fig. 3:

$$i_{eq} = y$$

Substituting the equation (39) in equation (41), we obtain:

$$i_{eq}^{n} = K_p.\{K_s.K_{i.q}.sat(S(\Omega))\} + \int K_i.\{K_s.k_{i.q}.sat(S(\Omega))\}$$

(42)

8. SPEED CONTROL WITH IP

The Fig. 5 shows the block diagram of speed control using IP (Integral Proportional) regulator.

Fig.5: Block diagram of speed control using IP regulator.

The closed-loop speed transfer function is:

$$\frac{\Omega(p)}{\Omega_{ref}(p)} = \frac{1}{1 + \frac{k_p + f}{k_p k_i} p + \frac{J}{k_p k_i p^2}}$$

(43)

Where k_p and k_i denote proportional and integral gains of IP speed controller. $p = \frac{d}{dt}$ differential operator.

It can be seen that the motor speed is represented by second order differential equation:

$$\omega_n^2 + 2\xi \omega_n p + p^2 = 0$$

(44)

By identification, we obtain the following parameter:

$$\begin{cases}
 k_p = 2.J \xi \omega_n - f \\
 k_i = J \omega_n^2
\end{cases}$$

(45)

Since, the choice of the parameters of the regulator is selected according to the choice of the damping ratio (ξ) and natural frequency (ω_n):

$$\begin{cases}
 k_p = 2.J \xi \omega_n - f \\
 k_i = J \omega_n^2
\end{cases}$$

(46)

In this paper, a time domain criterion is used for evaluating the FSMC and IP controllers. The performance criteria used for comparison between the FSMC and IP controllers is include Integrated Absolute Error (IAE).

The IAE performance criterion formulas are as follows [16]:

$$LAE = \int_0^\infty |r(t) - y(t)| dt = \int_0^\infty |e(t)| dt$$

(47)
9. RESULTS AND DISCUSSION

The IP and FSMC regulators in a DSFOC of DFIM are used as presented in Fig. 6. The DFIM used in this work is a 0.8 KW, whose nominal parameters are reported in the following: Rated values: 0.8 KW; 220/380 V-50 Hz; 3.8/2.2 A, 1420 rpm. Rated parameters: \(R_s = 11.98 \, \Omega \), \(R_r = 0.904 \, \Omega \), \(L_s = 0.414 \, H \), \(L_r = 0.0556 \, H \), \(M = 0.126 \, H \), \(P = 2.0 \), \(J = 0.01 \, Kg.m^2 \), \(f = 0.00 \, I.S. \).

The motor is operated at 157 rad/s under no load and a load disturbance torque (5 N.m) is suddenly applied at \(t=0.5s \) and eliminated at \(t=0.8s \), followed by a consign inversion (-157 rad/s) at \(t=1s \), also a load disturbance torque (-5 N.m) is suddenly applied at \(t=1.5s \) and eliminated at \(t=1.8s \). In these tests, the IP controller rejects the load disturbance slowly with overshoot and with a static error as shown in Fig. 7.

The same tests applied for IP are applied with the FSMC. Fig. 8 shows the performances of the fuzzy sliding mode controller (FSMC).

The FSMC rejects the load disturbances instantaneous with no overshoot and without static error as shown in Fig. 8. The FSMC presents the best performances, to achieve tracking of the desired trajectory. The performance of FSMC of speed is compared to IP regulator for precedent tests. The speed response is shown in Fig. 9. It can be seen clearly that the FSMC provides a minimum response time and robust speed response compared to the traditional IP controller.

Fig. 10 shows a zoom of speed answer during the starting, the application of the disturbance, the reversal speed and the application of the disturbance in inverse sense. The FSMC controller based drive system can handle the sudden change in load torque without overshoot and undershoot and steady state error, whereas the traditional IP controller has steady state error and the response is not as fast as compared to FSMC controller, as shown in Fig. 10.

The controllers behaviour can be better compared using standard performance indexes. Table 1 shows the values of \(IAE \) for the traditional IP and FSMC controllers, during precedent tests conditions. These indexes show that the FSMC controller performs better than the IP controller.

<table>
<thead>
<tr>
<th></th>
<th>IP</th>
<th>FSMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response time</td>
<td>0.2238</td>
<td>0.1181</td>
</tr>
<tr>
<td>Static error</td>
<td>0.2907</td>
<td>0</td>
</tr>
<tr>
<td>IAE</td>
<td>41.02</td>
<td>39.39</td>
</tr>
</tbody>
</table>

10. CONCLUSION

In this paper, the speed regulation of DFIM with two controllers, traditional IP and FSMC, has been designed and simulated. The comparative study shows that the FSMC controller can be enhance the performances of speed of the DFIM control. The simulation results have confirmed the efficiency of the FSMC for various operating conditions. The results show that the FSMC controller has good performance, and it is robust against external perturbations.

References

Fig. 7: Results of speed control using IP controller: (a) speed, (b) torque (c) and stator flux.

Fig. 8: Results of speed control using FSMC controller: (a) speed, (b) torque (c) and stator flux.

Comparison between Fuzzy Sliding Mode and Traditional IP Controllers in a Speed Control of a Doubly Fed Induction Motor

Yousef Bekakra was born in El-Oued, Algeria in 1984. He received the B.Sc degree in Electrical Engineering from El-Oued University, Algeria in 2007, his M.Sc degree from El-Oued University in 2010. He is currently working towards his PhD degree in Electrical Engineering from Biskra University, Algeria. His areas of interest are renewable energy, Electrical Drives and Process Control, application of Artificial Intelligence techniques for control and optimize electric power systems.

Djilani Ben Attous was born in El-Oued, Algeria in 1959. He received his Engineer degree in Electrotechnics from Polytechnic National Institute Algiers, Algeria in 1984. He got MSc degree in Power Systems from UMIST England in 1987. In 2000, he received his doctorate of state (PhD degree) from Batna University, Algeria. He is currently associate professor at El-Oued University, Algeria in Electrical Engineering. His research interests in Planning and Economic of Electric Energy System, Optimization Theory and its applications and he also investigated questions related with Electrical Drives and Process Control. He is member of the VTRS research Laboratory.