A Design Method for a Robust Stabilizing Multi-Period Repetitive Control System for Multiple-Input/Multiple-Output Plants with Specified Input-Output Frequency Characteristic Using the Parameterization

Zhongxiang Chen¹, Tatsuya Sakanushi², Kou Yamada³, Satoshi Tohnai⁴, and Yun Zhao⁵, Non-members

ABSTRACT

The multi-period repetitive control system is a type of servomechanism for a periodic reference input. Recently, the parameterization of all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants with uncertainty was obtained by Chen et al. However, using their method, it is complex to specify the low-pass filter in the internal model for the periodic reference input of which the role is to specify the input-output frequency characteristic. Because, the low-pass filter is related to four free parameters in the parameterization proposed by Chen et al. Chen et al. examined the parameterization of all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants with specified input-output frequency characteristic such that the input-output frequency characteristic can be specified beforehand. However, they omitted complete proof on account of space limitations. This paper gives the complete proof and demonstrates the effectiveness of the parameterization. The control characteristics of the system are presented, along with a design procedure for a robust stabilizing multi-period repetitive controller with specified input-output frequency characteristic. A numerical example is presented to illustrate the effectiveness of the proposed method.

Keywords: Repetitive Control, Multi-Period Repetitive Controller, Uncertainty, Robust Stability, Parameterization, Multiple-Input/Multiple-Output Plant, Low-Pass Filter

1. INTRODUCTION

A modified repetitive control system is a type of servomechanism for a periodic reference input. In other words, the repetitive control system follows a periodic reference input without steady state error, even when there exists a periodic disturbance or an uncertainty of a plant [1–6]. However, the modified repetitive control system has a bad effect on the disturbance attenuation characteristic [7], in that at certain frequencies, the sensitivity to disturbances of a control system with a conventional repetitive controller becomes twice as worse as that of a control system without a repetitive controller. Gotou et al. overcame this problem by proposing a multi-period repetitive control system [7]. However, the phase angle of the low-pass filter in a multi-period repetitive controller has a bad effect on the disturbance attenuation characteristic [8, 9]. Yamada et al. overcame this problem and proposed a design method for multi-period repetitive controllers to attenuate disturbances effectively [10, 11] using the time advance compensation described in [8, 9, 12]. Using this multi-period repetitive control structure, Steinbuch proposed a design method for repetitive control systems with uncertain period time [13].

On the other hand, there is an important control problem of finding all stabilizing controllers, named the parameterization problem [14–18]. The parameterization of all stabilizing multi-period repetitive controllers was solved in [19, 20].

When multi-period repetitive control design methods are applied to real systems, the influence of uncertainties in the plant must be considered. In some cases, uncertainties in the plant make the modified repetitive control system unstable, even though the controller was designed to stabilize the nominal plant. The stability problem with uncertainty is known as the robust stability problem [24]. Satoh et al. examined the parameterization of all robust stabilizing multi-period repetitive controllers for plants with uncertainties [21]. Chen et al. expanded the result in [21] and proposed the parameterization of all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants [22]. However, when employing the method in [22], it is complex to specify the low-pass filter in the internal
model for the periodic reference input of which the role is to specify the input-output frequency characteristic. Because, the low-pass filter is related to four kinds of free parameters in the parameterization by Chen et al. When we design a robust stabilizing multi-period repetitive controller, if the low-pass filters in the internal model for the periodic reference input are settled beforehand, we can specify the input-output frequency characteristic more easily than the method in [22]. This is achieved by parameterizing all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants with specified input-output frequency characteristic, which is the parameterization when the low-pass filters are settled beforehand. However, no paper has considered the problem to obtain the parameterization of all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants with specified input-output frequency characteristic. In addition, control characteristics were not examined using the obtained parameterization in [23].

Consider the unity feedback control system in

\[
\begin{align*}
\dot{y} &= G(s)u + d \\
u &= C(s)(r - y),
\end{align*}
\]

where \(G(s) \in \mathbb{R}^{m \times p}(s)\) is the multiple-input/multiple-output plant, \(G(s)\) is assumed to be stabilizable and detectable. \(C(s)\) is the multi-period repetitive controller with \(m\)-th input and \(p\)-th output defined later, \(u \in \mathbb{R}^p\) is the control input, \(d \in \mathbb{R}^m\) is the disturbance, \(y \in \mathbb{R}^m\) is the output and \(r \in \mathbb{R}^m\) is the periodic reference input with period \(T > 0\) satisfying

\[
r(t + T) = r(t) \quad (\forall t \geq 0).
\]

It is assumed that \(m \leq p\) and rank \(G(s) = m\). The nominal plant of \(G(s)\) is denoted by \(G_m(s) \in \mathbb{R}^{m \times p}(s)\). Both \(G(s)\) and \(G_m(s)\) are assumed to have no zero or pole on the imaginary axis. In addition, it is assumed that the number of poles of \(G(s)\) in the closed right half plane is equal to that of \(G_m(s)\). The relation between the plant \(G(s)\) and the nominal plant \(G_m(s)\) is written as

\[
G(s) = (I + \Delta(s))G_m(s),
\]

where \(\Delta(s)\) is an uncertainty. The set of \(\Delta(s)\) is all rational functions satisfying

\[
\sigma \{\Delta(j\omega)\} < |W_T(j\omega)| \quad (\forall \omega \in \mathbb{R}^+),
\]

2. PROBLEM FORMULATION

In this paper, we give a complete proof of the parameterization of all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants with specified input-output frequency characteristic, which was omitted in [23]. Next, we clarify control characteristics using the parameterization in [23]. In addition, a design procedure using the parameterization is presented. Finally, a numerical example is presented to illustrate the effectiveness of the proposed design method.

Notation

- \(R\) is the set of real numbers.
- \(\mathbb{R}_+\) is \(\mathbb{R} \cup \{\infty\}\).
- \(\mathbb{R}(s)\) is the set of real rational functions with \(s\).
- \(\mathbb{R}H_\infty\) is the set of stable proper real rational functions.
- \(H_\infty\) is the set of stable causal functions.
- \(D^\perp\) is the orthgonal complement of \(D\), i.e., \(\begin{bmatrix} D & D^\perp \end{bmatrix}\) is unitary.
- \(A^T\) is transpose of \(A\).
- \(A^\dagger\) is pseudo inverse of \(A\).
- \(\rho(\{\cdot\})\) is spectral radius of \(\{\cdot\}\).
- \(\sigma(\{\cdot\})\) is largest singular value of \(\{\cdot\}\).
- \(\|\{\cdot\}\|_\infty\) is \(H_\infty\) norm of \(\{\cdot\}\).
- \(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\) represents the state space description \(C(sI - A)^{-1}B + D\).
- \(\text{diag}(a_1, \cdots, a_n)\) is an \(n \times n\) diagonal matrix with \(a_i\) as its \(i\)-th diagonal element.
A design method for a robust stabilizing multi-period repetitive control system for multiple-input/multiple-output plants with specified repetitive control system. Using the result in [22], the low-pass filter \(q_i(s) \) \((i = 1, \ldots, N)\) takes the form in

\[
q_i(s) = \left(Z_{21}(s) \dot{Q}_{ni}(s) + Z_{22}(s) \dot{Q}_{di}(s) \right) \left(Z_{21}(s) \dot{Q}_{ni}(s) + Z_{22}(s) \dot{Q}_{di}(s) \right)^{-1}
\]

\[(i = 1, \ldots, N),\]

where \(Z_{21}(s) \) and \(Z_{22}(s) \) are fixed functions, and \(\dot{Q}_{ni}(s) \in RH_{\infty}^{m \times m}, \dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}(s) \in RH_{\infty}^{m \times m} \) \((i = 1, \ldots, N)\), \(\dot{Q}_{di}
necessarily a multi-period repetitive controller, satisfying (5) is equivalent to the following H_∞ control problem. In order to obtain the controller $C(s)$ satisfying (5), we consider the control system shown in Fig. 1. $P(s)$ is selected such that the transfer function from w to z in Fig. 1 is equal to $T(s)W_T(s)$. The state space description of $P(s)$ is in general,

$$\begin{align*}
\dot{x}(t) &= Ax(t) + B_1 w(t) + B_2 u(t) \\
z(t) &= C_1 x(t) + D_{11} u(t) + D_{21} w(t), \quad (12)
y(t) &= C_2 x(t) + D_{21} w(t),
\end{align*}$$

where $A \in \mathbb{R}^{n \times n}$, $B_1 \in \mathbb{R}^{n \times m}$, $B_2 \in \mathbb{R}^{n \times p}$, $C_1 \in \mathbb{R}^{m \times n}$, $C_2 \in \mathbb{R}^{m \times n}$, $D_{12} \in \mathbb{R}^{p \times n}$, $D_{21} \in \mathbb{R}^{m \times m}$, $x(t) \in \mathbb{R}^n$, $w(t) \in \mathbb{R}^m$, $u(t) \in \mathbb{R}^p$, and $y(t) \in \mathbb{R}^m$. $P(s)$ is called the generalized plant. $P(s)$ is assumed to satisfy following assumptions [24]:

1. (C_2, A) is detectable, (A, B_2) is stabilizable.
2. D_{12} has full column rank, and D_{21} has full row rank.
3. rank \(\begin{bmatrix} A - j\omega I & B_2 \\ C_1 & D_{12} \end{bmatrix} = n + p \quad (\forall \omega \in \mathbb{R}_+), \)

rank \(\begin{bmatrix} A - j\omega I & B_1 \\ C_2 & D_{21} \end{bmatrix} = n + m \quad (\forall \omega \in \mathbb{R}_+). \)

Under these assumptions, according to [24], following lemma holds true.

Lemma 1: If controllers satisfying (5) exist, both

\[
X \left(A - B_2 D_{12}^T C_1 \right) + \left(A - B_2 D_{12}^T C_1 \right)^T X
+ X \left(B_1 D_{12}^T - B_2 \left(D_{12}^T D_{12} \right)^{-1} B_1 \right)^T X
+ \left(D_{12}^T C_1 \right)^T D_{12}^T C_1 = 0 \quad (13)
\]

and

\[
Y \left(A - B_1 D_{21}^T C_2 \right)^T + \left(A - B_1 D_{21}^T C_2 \right)^T Y
+ Y \left(C_1^T C_1 - C_1^T D_{21} D_{21}^T C_1 \right)^T Y
+ B_1 D_{21} \left(B_1 D_{21} \right)^T = 0 \quad (14)
\]

have solutions $X \geq 0$ and $Y \geq 0$ such that

\[
\rho(XY) < 1 \quad (15)
\]

and both

\[
A - B_2 D_{12}^T C_1
+ \left\{ B_1 D_{12}^T - B_2 \left(D_{12}^T D_{12} \right)^{-1} B_1 \right\} X \quad (16)
\]

and

\[
A - B_1 D_{21}^T C_2
+ Y \left\{ C_1^T C_1 - C_2^T D_{21} D_{21}^T \right\}^{-1} C_2 \right\} Y \quad (17)
\]

have no eigenvalue in the closed right half plane. Using X and Y, the parameterization of all controllers satisfying (5) is given by

\[
C(s) = C_{11}(s) + C_{12}(s)Q(s)(I - C_{22}(s)Q(s))^{-1} C_{21}(s), \quad (18)
\]

where

\[
\begin{bmatrix}
C_{11}(s) & C_{12}(s) \\
C_{21}(s) & C_{22}(s)
\end{bmatrix}
= \begin{bmatrix}
A_c & B_{c1} & B_{c2} \\
C_{c1} & D_{c11} & D_{c12} \\
C_{c2} & D_{c21} & D_{c22}
\end{bmatrix}, \quad (19)
\]

\[
A_c = A + B_1 B_1^T X - B_2 \left(D_{12}^T C_1 + E_{12}^{-1} B_1^T X \right)
- (I - Y X)^{-1} \left(B_1 D_{21}^T + Y C_2^T E_{21} \right),
\]

\[
C_{c1} = -D_{12}^T C_1 - E_{12}^{-1} B_1^T X,
C_{c2} = -E_{21}^{-1/2} \left(C_2 + D_{21} B_1^T X \right),
\]

\[
D_{c11} = 0, \quad D_{c12} = E_{12}^{-1/2}, \quad D_{c21} = E_{21}^{-1/2}, \quad D_{c22} = 0,
\]

\[
E_{12} = D_{12}^T D_{12}, \quad E_{21} = D_{21} D_{21}^T
\]

and $Q(s) \in H_\infty^{p \times m}$ is any function satisfying $\|Q(s)\|_\infty < 1$.

$C(s)$ in (18) is written using Linear Fractional Transformation(LFT). Using homogeneous transformation, (18) is rewritten by

\[
C(s) = \left(Z_{11}(s)Q(s) + Z_{12}(s) \right) \left(Z_{21}(s)Q(s) + Z_{22}(s) \right)^{-1}
\]

\[
= \left(Q(s) \tilde{Z}_{21}(s) + \tilde{Z}_{22}(s) \right)^{-1}
\]

where $Z_{ij}(s)(i = 1, 2; j = 1, 2)$ and $\tilde{Z}_{ij}(s)(i = 1, 2; j = 1, 2)$ are defined by

\[
\begin{bmatrix}
Z_{11}(s) & Z_{12}(s) \\
Z_{21}(s) & Z_{22}(s)
\end{bmatrix} = \begin{bmatrix}
C_{12}(s) - C_{11}(s) C_{21}^{-1}(s) C_{22}(s) \\
-C_{21}^{-1}(s) C_{22}(s) \\
C_{11}(s) C_{21}^{-1}(s) \\
C_{21}^{-1}(s)
\end{bmatrix}, \quad (20)
\]

Fig.1: Block diagram of H_∞ control problem
A design method for a robust stabilizing multi-period repetitive control system for multiple-input/multiple-output plants with specified frequency characteristic is summarized in the following theorem.

Theorem 1: If multi-period repetitive controllers satisfying (5) exist, both (13) and (14) have solutions \(X \geq 0 \) and \(Y \geq 0 \) such that (15) and both (16) and (17) have no eigenvalue in the closed right half plane. Using \(X \) and \(Y \), the parameterization of all robust stabilizing multi-period repetitive controllers with specified input-output frequency characteristic satisfying (5) is given by

\[
C(s) = (Z_{11}(s)Q(s) + Z_{12}(s))(Z_{21}(s)Q(s) + Z_{22}(s))^{-1}
\]

and

\[
Q(s) = \left(Q_{a0}(s) + \sum_{i=1}^{N} Q_{mi}(s)q_i(s)e^{-sT_i} \right)^{-1} \left(Q_{a0}(s) + \sum_{i=1}^{N} Q_{di}(s)q_i(s)e^{-sT_i} \right),
\]

where \(Z_{ij}(s)(i = 1, 2; j = 1, 2) \) and \(Z_{ij}(s)(i = 1, 2; j = 1, 2) \) are defined by (21) and (22) and satisfying (23), \(C_{ij}(s)(i = 1, 2; j = 1, 2) \) are given by (19) and \(Q(s) \in H_{\infty}^{m \times m} \) is any function satisfying \(\|Q(s)\|_{\infty} < 1 \) and written by

\[
Q_{a0}(s) \in RH_{\infty}^{m \times m}, \quad Q_{a0}(s) \in RH_{\infty}^{m \times m}, \quad Q_{mi}(s) \in RH_{\infty}^{m \times m} (i = 1, \ldots, N), \quad \text{and } Q_{di}(s) \in RH_{\infty}^{m \times m} (i = 1, \ldots, N).
\]
the assumption of rank $C_i(s) = m$ ($i = 1, \ldots, N$) and from (33) and (35),
\[
\text{rank } D_i(s) = m \quad (i = 1, \ldots, N)
\] (36)
and
\[
\text{rank } N_i(s) = m \quad (i = 1, \ldots, N)
\] (37)
hold true. From (36), (37), (29) and (31), (27) is satisfied. Thus, the necessity has been shown.

Next, the sufficiency is shown. That is, it is shown that if $C(s)$ and $Q(s) \in H^\infty_{\infty \times m}$ are settled by (24) and (25), respectively, then the controller $C(s)$ is written by the form in (7) and rank $C_i(s) = m$ ($i = 1, \ldots, N$) hold true. Substituting (25) into (24), we have (7), where $C_0(s)$ and $C_i(s)$ ($i = 1, \ldots, N$) are denoted by
\[
C_0(s) = (Z_{11}(s)Q_{00}(s) + Z_{12}(s)Q_{01}(s)) (Z_{21}(s)Q_{n0}(s) + Z_{22}(s)Q_{n1}(s))^{-1},
\] (38)
and
\[
C_i(s) = \{ [Z_{11}(s)Q_{00}(s) + Q_{ni}(s)] + Z_{12}(s)Q_{01}(s) + Q_{di}(s) \} [Z_{21}(s)Q_{n0}(s) + Z_{22}(s)Q_{n1}(s)]^{-1}
\] (i = 1, \ldots, N) (39)
We find that if $C(s)$ and $Q(s)$ are settled by (24) and (25), respectively, then the controller $C(s)$ is written by the form in (7). From (27) and (39),
\[
\text{rank } C_i(s) = m \quad (i = 1, \ldots, N)
\] (40)
holds true. Thus, the sufficiency has been shown.

We have thus proved Theorem 1.

4. CONTROL CHARACTERISTICS

In this section, we describe control characteristics of the control system in (1) using the robust stabilizing multi-period repetitive controller $C(s)$ for multiple-input/multiple-output plants with specified input-output frequency characteristic in (24).

From Theorem 1, $Q(s)$ in (25) must be included in $H^\infty_{\infty \times m}$. Since $Q_{00}(s) \in RH^\infty_{\infty \times m}$, $Q_{ni}(s) \in RH^\infty_{\infty \times m}$ and $q_{i}(s) \in RH^\infty_{m \times m}$ in (25), if
\[
\left(Q_{00}(s) + \sum_{i=1}^{N} Q_{di}(s)q_{i}(s)e^{-sT_i} \right)^{-1} \in H^\infty_{m \times m},
\] (41)
then $Q(s)$ satisfies $Q(s) \in H^\infty_{\infty \times m}$. That is, the role of $Q_{00}(s)$ and $Q_{di}(s)$ ($i = 1, \ldots, N$) in (25) is to assure the stability of the control system in (1).

Next, we mention the input-output characteristic. The transfer function $S(s)$ from the periodic reference input r to the error $e = r - y$ is written by
\[
S(s) = (I + G(s)C(s))^{-1} = S_n(s)S_d^{-1}(s),
\] (42)
where
\[
S_n(s) = \left(I - \sum_{i=1}^{N} q_{i}(s)e^{-sT_i} \right)C_{21}^{-1}(s)
\] (43)
and
\[
S_d(s) = \left(Z_{22}(s) + G(s)Z_{12}(s) \right)
\] (44)
From (42), for frequency components ω_k ($k = 0, 1, \ldots, n$) in (10) of the periodic reference input r, since $q_{i}(s) \in RH^\infty_{\infty \times m}$ ($i = 1, \ldots, N$) are settled beforehand satisfying (9), the output y follows the periodic reference input r with small steady state error. That is, we find that by using the proposed parameterization of all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants with specified input-output frequency characteristic, the input-output frequency characteristic can be specified beforehand.

Finally, we mention the disturbance attenuation characteristic. The transfer function $S(s)$ from the disturbance d to the output y is written by (42), (43) and (44). From (42), for the disturbance d with the same frequency components ω_k ($k = 0, 1, \ldots, n$) in (10) of the periodic reference input r, since $S(s)$ satisfies $S(j\omega_k) \approx 0$ ($\forall k = 0, 1, \ldots, n$), the disturbance d is attenuated effectively. For the frequency component ω_d of the disturbance d that is different from that of the periodic reference input r (that is, $\omega_d \neq \omega_k$), even if
\[
\sigma \left\{ I - \sum_{i=1}^{N} q_{i}(j\omega_d) \right\} \approx 0,
\] (45)
the disturbance d cannot be attenuated, because
\[
e^{-j\omega_d T_i} \neq 1
\] (46)
and
\[
\sigma \left\{ I - \sum_{i=1}^{N} q_{i}(j\omega_d) e^{-j\omega_d T_i} \right\} \neq 0.
\] (47)
To attenuate the frequency component ω_d of the disturbance $d(s)$ that is different from that of the periodic reference input $r(s)$, we need to set $Q_{n0}(s)$ and $Q_{00}(s)$ satisfying
\[
\sigma \{ Q_{00}(j\omega_d) - C_{22}(j\omega_d)Q_{n0}(j\omega_d) \} \approx 0.
\] (48)
From above discussion, the role of \(Q_{d0}(s) \) and \(Q_{di}(s) \) \((i = 1, \ldots, N)\) is to assure the stability of the control system in (1) by satisfying \(Q(s) \in H^\infty \). The role of \(q_i(s) \) \((i = 1, \ldots, N)\) is to specify the input-output frequency characteristic for the periodic reference input \(r \) and it can be specified beforehand. In addition, \(q_i(s) \) \((i = 1, \ldots, N)\) specify the disturbance attenuation characteristic for the disturbance \(d \) with the same frequency components \(\omega_k \) \((k = 0, 1, \ldots, n)\) of the periodic reference input \(r \). The role of \(Q_{n0}(s) \) and \(Q_{dn}(s) \) is to specify the disturbance attenuation characteristic for the frequency component of the disturbance \(d(s) \) that is different from that of the periodic reference input \(r(s) \).

5. DESIGN PROCEDURE

In this section, a design procedure for robust stabilizing multi-period repetitive control system for multiple-input/multiple-output plants with specified input-output frequency characteristic is presented.

A design procedure for robust stabilizing multi-period repetitive controllers \(C(s) \) satisfying Theorem 1 is summarized as follows:

Procedure

Step 1) Obtain \(C_{11}(s) \), \(C_{12}(s) \), \(C_{21}(s) \) and \(C_{22}(s) \) by solving the robust stability problem using the Riccati equation based \(H^\infty \) control.

Step 2) \(q_i(s) \in RH^\infty_{0 \times m} \) \((i = 1, \ldots, N)\) and \(T_i \) \((i = 1, \ldots, N)\) in (25) are set so that for the frequency components \(\omega_k(k = 0, 1, \ldots, n) \) of the periodic reference input \(r(s) \),

\[
\sigma \left\{ I - \sum_{i=1}^{N} q_i(j\omega_k)e^{-j\omega_k T_i} \right\} \succeq 0 \quad (\forall k = 0, 1, \ldots, n)
\]

is satisfied.

Step 3) \(Q_{m}(s) \in RH^\infty_{0 \times m} \) \((i = 1, \ldots, N)\) and \(Q_{d}(s) \in RH^\infty_{0 \times m} \) \((i = 1, \ldots, N)\) in (25) are set according to

\[
Q_{m}(s) = C_{22d}(s)Q_{\delta}(s) - Q_{n0}(s) \quad (\forall i = 1, \ldots, N) \tag{50}
\]

and

\[
Q_{d}(s) = C_{22n}(s)Q_{\delta}(s) - Q_{d0}(s) \quad (\forall i = 1, \ldots, N) \tag{51}
\]

so that (26) is satisfied, where \(C_{22d}(s) \in RH_{0 \times p}^\infty \), \(C_{22n}(s) \in RH_{0 \times p}^\infty \) are coprime factors of \(C_{22}(s) \) satisfying

\[
C_{22}(s) = C_{22n}(s)C_{22d}(s)^{-1} \tag{52}
\]

and \(Q_{\delta}(s) \in RH^\infty_{0 \times m} \) \((i = 1, \ldots, N)\) is any function.

Step 4) In order to hold \(Q(s) \in H^\infty \) in (25), \(Q_{d0}(s) \in RH^\infty_{0 \times m} \) in (25) and \(Q_{i}(s) \in RH_{0 \times m}^\infty \) \((i = 1, \ldots, N)\) in (51) are set to satisfy

\[
\left(Q_{d0}(s) + \sum_{i=1}^{N} Q_{di}(s)q_i(s)e^{-sT_i} \right)^{-1} \in H^\infty. \tag{53}
\]

Step 5) \(Q_{n0}(s) \in RH^\infty_{0 \times m} \) is set so that for the frequency component \(\omega_k \) of the disturbance \(d \), \(\sigma \{ Q_{d0}(j\omega_k) - C_{22}(j\omega_k)Q_{n0}(j\omega_k) \} \) is effectively small. To design \(Q_{n0}(s) \) to make \(\sigma \{ Q_{d0}(j\omega_k) - C_{22}(j\omega_k)Q_{n0}(j\omega_k) \} \) effectively small, \(Q_{n0}(s) \) is set according to

\[
Q_{n0}(s) = C_{22d}(s)q_d(s)Q_{d0}(s), \tag{54}
\]

where \(C_{22d}(s) \in RH_{0 \times p}^\infty \) is an outer function of \(C_{22}(s) \) satisfying

\[
C_{22}(s) = C_{22n}(s)C_{22d}(s), \tag{55}
\]

\(C_{22d}(s) \in RH^\infty_{0 \times m} \) is an inner function satisfying \(C_{22d}(0) = I, q_d(s) \in RH^\infty_{0 \times m} \) is a low-pass filter satisfying \(q_d(0) = I, \) as

\[
q_d(s) = \text{diag} \left\{ \frac{1}{1 + \tau_{d1}s} \cdot \cdot \cdot \frac{1}{1 + \tau_{dm}s} \right\} \tag{56}
\]

is valid, \(\tau_{d1}(i = 1, \ldots, m) \) are arbitrary positive integers to make \(C_{22d}(s)q_d(s) \) proper and \(\tau_{di} \in R \) \((i = 1, \ldots, m)\) are any positive real numbers satisfying

\[
\sigma \{ I - C_{22d}(j\omega_k)q_d(j\omega_k) \} \succeq 0. \tag{57}
\]

6. NUMERICAL EXAMPLE

In this section, a numerical example is shown to illustrate the effectiveness of the proposed parameterization.

Consider the problem to obtain the parameterization of all robust stabilizing multi-period repetitive controllers with the specified input-output frequency characteristic for plant \(G(s) \) in (3), where the nominal plant \(G_m(s) \) and the upper bound \(W_T(s) \) of the set of \(\Delta(s) \) are given by

\[
G_m(s) = \begin{bmatrix}
\frac{s + 3}{(s - 2)(s + 9)} & \frac{2}{(s - 2)(s + 9)} \\
\frac{s + 4}{(s - 2)(s + 9)} & \frac{s + 3}{(s - 2)(s + 9)}
\end{bmatrix} \tag{58}
\]

and

\[
W_T(s) = \frac{s + 400}{550}. \tag{59}
\]

The period \(T \) of the periodic reference input \(r \) in (2) is \(T = 2[\text{sec}] \). Solving the robust stability problem using Riccati equation based \(H^\infty \) control as Theorem 1, the parameterization of all robust stabilizing multi-period
repetitive controllers with the specified input-output frequency characteristic is obtained as (24) and (25). Here, \(C_{ij}(s)(i = 1, 2; j = 1, 2) \) are
\[
C_{11}(s) = \begin{bmatrix}
3.452 \cdot 10^3(s + 9)(s + 4) \\
-3.452 \cdot 10^3(s + 9) \\
-6.905 \cdot 10^3(s + 9)
\end{bmatrix}
\frac{(s + 408.6)(s + 3)(s + 2)}{(s + 408.6)(s + 2)};
\frac{(s + 408.6)(s + 2)}{(s + 408.6)}
\] ; (60)
\[
C_{12}(s) = \begin{bmatrix}
289.2(s + 9)(s + 0.7639) \\
-467.9(s + 9)(s + 5.236)
\end{bmatrix}
\frac{s + 408.6}{s + 408.6}
\] ; (61)
\[
C_{21}(s) = \begin{bmatrix}
s + 400 \\
0
\end{bmatrix}
\frac{s + 408.6}{s + 408.6}
\] ; (62)
\[
C_{22}(s) = \begin{bmatrix}
292.5 \\
-473.2
\end{bmatrix}
\frac{s + 408.6}{s + 408.6}
\] ; (63)

\(N \) is selected as \(N = 3 \) and \(T_i \) \((i = 1, 2, 3) \) are set as \(T_i = T \cdot i \) \((i = 1, 2, 3) \). The low-pass filter \(q_i(s) \in RH^{2\times 2}_{\infty}(i = 1, 2, 3) \) is settled by
\[
q_i(s) = \frac{1}{3(0.01s + 1)} \quad i = 1, 2, 3.
\] (64)

\(Q_{n0}(s) \in RH^{2\times 2}_{\infty}(i = 1, 2, 3) \) and \(Q_{q0}(s) \in RH^{2\times 2}_{\infty}(i = 1, 2, 3) \) are settled according to (50) and (51).

In order to hold \(Q(s) \in H^{2\times 2}_{\infty} \) in (25), \(Q_{d0}(s) \in RH^{2\times 2}_{\infty} \) in (25) and \(Q_i(s) \in RH^{2\times 2}_{\infty}(i = 1, 2, 3) \) in (50) and (51) are settled by
\[
Q_{d0}(s) = \begin{bmatrix}
s + 993.5 \\
946.4
\end{bmatrix}
\frac{s + 408.6}{s + 408.6}
\] ; (65)

and
\[
\tilde{Q}_i(s) = 2I \quad i = 1, 2, 3.
\] (66)

When \(Q_{d0}(s) \) and \(\tilde{Q}_i(s)(i = 1, 2, 3) \) are set as (65) and (66), the fact that \(Q(s) \in H_{\infty} \) in (25) is confirmed as follows: Since \(Q_{n0}(s) \in RH_{\infty}, Q_{n0}(s) \in RH_{\infty}(i = 1, 2, 3) \) and \(q_i(s) \in RH_{\infty}(i = 1, 2, 3) \), if the Nyquist plot of \(\text{det}(Q_{d0}(s) + \sum_{i=1}^{3} Q_{d}(s)q_i(s)e^{-sT_i}) \) does not encircle the origin, then \(Q(s) \in H_{\infty} \) holds true. The Nyquist plot of \(\text{det}(Q_{d0}(s) + \sum_{i=1}^{3} Q_{d}(s)q_i(s)e^{-sT_i}) \) is shown in Fig. 2. From Fig. 2, since the Nyquist plot of \(\text{det}(Q_{d0}(s) + \sum_{i=1}^{3} Q_{d}(s)q_i(s)e^{-sT_i}) \) does not encircle the origin, we find that \(Q(s) \in H_{\infty} \) holds true.

In order for disturbance
\[
d(t) = \begin{bmatrix}
d_1(t) \\
d_2(t)
\end{bmatrix} = \begin{bmatrix}
\sin(0.5\pi t) \\
2\sin(0.5\pi t)
\end{bmatrix}
\] (67)
of which the frequency component is different from that of the periodic reference input \(r(t) \) to be attenuated effectively, \(Q_{n0}(s) \) is settled by (54), where
\[
C_{220}(s) = C_{22}(s) \in RH^{2\times 2}_{\infty}
\] (68)
and
\[
q_d(s) = \frac{1}{0.02s + 1} \quad I \in RH^{2\times 2}_{\infty}
\] (69)

The largest singular value plot of \(Q(s) \) is shown in Fig. 3. Figure 3 shows that the designed \(Q(s) \) satisfies \(\|Q(s)\|_{\infty} < 1 \).
When $\Delta(s)$ is given by

$$\Delta(s) = \begin{bmatrix} \frac{s - 100}{s + 200} & 200 \\ \frac{s + 600}{s - 100} & \frac{s + 500}{s - 100} \end{bmatrix},$$ \hspace{1cm} (70)$$
in order to confirm that $\Delta(s)$ satisfies (4), the largest singular value plot of $\Delta(s)$ and the gain plot of $W_{PF}(s)$ are shown in Fig. 4. Here, the solid line shows the largest singular value plot of $\Delta(s)$ and the broken line shows the gain plot of $W_{PF}(s)$. Figure 4 shows that the uncertainty $\Delta(s)$ satisfies (4).

Using above-mentioned parameters, we have a robust stabilizing multi-period repetitive controller with specified input-output frequency characteristic. When the designed robust stabilizing multi-period repetitive controller $C(s)$ is used, the response of the error $e(t) = r(t) - y(t) = [e_1(t), e_2(t)]^T$ in (1) for the periodic reference input $r(t) = [r_1(t), r_2(t)]^T = [\sin(\pi t), 2\sin(2\pi t)]^T$ is shown in Fig. 5. Here, the broken line shows the response of the periodic reference input $r_2(t)$, the solid line shows that of the error $e_1(t)$, and the dotted and broken line shows that of the error $e_2(t)$. Figure 5 shows that the output $y(t)$ follows the periodic reference input $r(t)$ with small steady state error, even if the plant has uncertainty $\Delta(s)$.

Next, using the designed robust stabilizing multi-period repetitive controller with specified input-output frequency characteristic, the disturbance attenuation characteristic is shown. The response of the output $y(t) = [y_1(t), y_2(t)]^T$ for the disturbance $d(t) = [d_1(t), d_2(t)]^T = [\sin(2\pi t), 2\sin(2\pi t)]^T$ of which the frequency component is equivalent to that of the periodic reference input $r(t)$ is shown in Fig. 6. Here, the broken line shows the response of the disturbance $d_1(t)$, the dotted line shows that of the disturbance $d_2(t)$, the solid line shows that of the output $y_1(t)$ and the dotted and broken line shows that of the output $y_2(t)$. Figure 6 shows that the disturbance $d(t)$ is attenuated effectively. Finally, the response of the output $y(t) = [y_1(t), y_2(t)]^T$ for the disturbance $d(t)$ in (67) of which the frequency component is different from that of the periodic reference input $r(t)$ is shown in Fig. 7. Here, the broken line shows the response of the disturbance $d_1(t)$, the dotted line shows that of the disturbance $d_2(t)$, the solid line shows that of the output $y_1(t)$ and the dotted and broken line shows that of the output $y_2(t)$. Figure 7 shows that the disturbance $d(t)$ in (67) is attenuated effectively.

In this way, we find that we can easily design a robust stabilizing multi-period repetitive controller with specified input-output frequency characteristic using Theorem 1.

Fig. 4: The largest singular value plot of $\Delta(s)$ and the gain plot of $W_{PF}(s)$

Fig. 5: The response of the error $e(t) = r(t) - y(t) = [e_1(t), e_2(t)]^T$ for the periodic reference input $r(t) = [r_1(t), r_2(t)]^T = [\sin(\pi t), 2\sin(2\pi t)]^T$

Fig. 6: The response of the output $y(t) = [y_1(t), y_2(t)]^T$ for the disturbance $d(t) = [d_1(t), d_2(t)]^T = [\sin(2\pi t), 2\sin(2\pi t)]^T$
7. CONCLUSIONS

In this paper, we gave a complete proof of the parameterization of all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants with specified input-output frequency characteristic such that low-pass filters in the internal model for the periodic reference input are settled beforehand. In addition, we demonstrated the effectiveness of the parameterization of all robust stabilizing multi-period repetitive controllers for multiple-input/multiple-output plants with specified input-output frequency characteristic. Control characteristics of a robust stabilizing multi-period repetitive control system are presented, as well as a design procedure for a robust stabilizing multi-period repetitive controller with specified input-output frequency characteristic. A numerical example was shown to illustrate the effectiveness of the proposed parameterization.

Advantages of the multi-period repetitive control system using the proposed design method are that its input-output frequency characteristic is easily specified than in the method employed in [22]. This control system is expected to have practical applications in, for example, engines, electrical motors and generators, converters, and other machines that perform cyclic tasks.

The first author would like to express his gratitude to China Scholarship Council for the supports and scholarship.

References

Fig.7: The response of the output $y(t) = [y_1(t), y_2(t)]^T$ for the disturbance $d(t) = [d_1(t), d_2(t)]^T = [\sin(0.5\pi t), 2\sin(0.5\pi t)]^T$.

Zhongxiang Chen was born in Hunan, China, in 1984. He received a B.S. and M.S. degrees in Applied Mathematics from Central South University, Changsha, China, in 2007 and 2010, respectively. He is currently a doctoral candidate in mechanical System Engineering of Gunma University. His current research interests include robust control, repetitive control and control application.

Tatsuya Sakamushi was born in Hokkaido, Japan, in 1987. He received a B.S. and M.S. degrees from Gunma University, Gunma, Japan, in 2009 and 2011, respectively. He is currently a doctoral student in Mechanical System Engineering at Gunma University. His research interests include PID control, observer and repetitive control. He received Fourth International Conference on Innovative Computing, Information and Control Best Paper Award in 2009.

Kou Yamada was born in Akita, Japan, in 1964. He received B.S. and M.S. degrees from Yamagata University, Yamagata, Japan, in 1987 and 1989, respectively, and the Dr. Eng. degree from Osaka University, Osaka, Japan in 1997. From 1991 to 2000, he was with the Department of Electrical and Information Engineering, Yamagata University, Yamagata, Japan, as a research associate. From 2000 to 2008, he was an associate professor in the Department of Mechanical System Engineering, Gunma University, Gunma, Japan. Since 2008, he has been a professor in the Department of Mechanical System Engineering, Gunma University, Gunma, Japan. His research interests include robust control, repetitive control, process control and control theory for inverse systems and infinite-dimensional systems. Dr. Yamada received the 2005 Yokoyama Award in Science and Technology, the 2005 Electrical Engineering/Electronics, Computer, Telecommunication, and Information Technology International Conference (ECTI-CON2005) Best Paper Award, the Japanese Ergonomics Society Encouragement Award for Academic Paper in 2007, the 2008 Electrical Engineering/Electronics, Computer, Telecommunication, and Information Technology International Conference (ECTI-CON2008) Best Paper Award and Fourth International Conference on Innovative Computing, Information and Control Best Paper Award in 2009.

Satoshi Tohnai was born in Hyogo, Japan, in 1987. He received a B.S. degrees in Mechanical System Engineering from Gunma University, Gunma, Japan, in 2012. He is currently M.S. candidate in Mechanical System Engineering at Gunma University. His research interests include repetitive control.

Yun Zhao was born in Jilin, China, in 1984. He received a B.S. degree in Design and Manufacture of Machinery and Automation Profession and Granted Graduation from Jilin Institute of Chemical Technology, Jilin, China, in 2008. He is currently M.S. candidate in Mechanical System Engineering at Gunma University. His research interests include repetitive control.