Optimum Value for Resistive Fault Current Limiter for Protection of a Power System with Distributed Generation

M. S. Jayasree¹, V. S. Parvathy², S. Ramalyer³, and G. R. Bindu⁴, Non-members

ABSTRACT

Renewable energy resources are being used for the last six decades for the generation of electrical power. Electrical safety and protection are main concerns in the successful operation of a power system. Integrating Distributed Generators (DGs) into a power system creates technical problems and thus affecting the safety of the system. When a fault occurs in a power system connected with distributed generator, the DG itself contributes fault current to the system. This causes disturbances to the settings of all protective devices. Original relay protection scheme is affected by the connection of distributed generators and causes mal-operation of both primary and backup relays. The fault current contribution of DG can be limited by placing Fault Current Limiter (FCL) in series with the DG. This paper proposes a novel method for the determination of the optimum resistance value for the FCL and thus to retain the original settings of relays. For optimizing the value of resistance of resistive fault current limiter Genetic Algorithm (GA) is used and the original relay settings are restored. This method is tested for standard IEEE 30 bus system. The effectiveness of proposed method is illustrated in the presence of single and multiple DG existence.

Keywords: Distributed Generators (DG), Directional Over Current Relay Coordination, Fault Current Limiter (FCL)

1. INTRODUCTION

Directional over current relays are major sensing equipments operating in distribution network and proper coordination of these relays are important in order to prevent system failure. There should be a minimum time interval between the operation of primary relay and backup relays for proper coordination.

Major quantities to be minimized in a relay coordination problem are the time setting and plug setting multipliers. Thus the relay coordination problem is generally formulated as a linear programming problem. In linear model only the time multiplier setting is minimized. The pickup current settings are fixed at values between the maximum load current and minimum fault current [1]. A sequential quadratic programming method simultaneously optimizing all the settings of directional over current relay presented in [2]. Optimum relay settings may be found by Genetic Algorithm, Evolutionary Algorithm or Particle swarm optimization in [3]-[5]. In [6] optimum coordination is determined by considering configuration changes in the network.

Distributed Generators are electric power generating units with capacities 3 kW to 50 MW which feeds power into the distribution system at the point of use. Popularity of DG is due to the fact that power loss due to long distance AC transmission lines can be eliminated since they are placed close to the load. The process of redesigning the transmission lines can also be eliminated by the use of DG. Distributed Generators mainly use renewable resources and thus they prevent pollution, reduce green house effect, help in saving fossil fuels, reduce fuel cost and ensure energy security.

When a DG is connected to a grid and a fault occurs in grid side, the DG acts as a source of fault current and the total fault current increases. This sometimes reduce the coordination time interval between the back up and primary relays or in certain cases the operating time of back up relay may become less than the primary relay. The original relay setting is disturbed and leads to the malfunctioning of the protective device. Thus each time the circuit breaker needs to be upgraded and the method is not cost effective. Another method is to disconnect the distributed generator following a fault at grid side. But this involves synchronization issues.

An effective solution to limit the fault current from DG is to connect Fault Current Limiter (FCL). FCLs are devices placed in series with the power system to be protected. They offer zero impedance during normal operation but introduce enough impedance during fault so that the fault current flowing through them is limited. The functionality of limiting current is obtained by current limiting reactors, fuses, triggered fuse, superconductive fault current limiter, and fuses and power electronic based current limiters. If the fault occurs the FCL increases its impedance and...
so prevents over-current stress which results as damaging, degradation, mechanical forces, extra heating of electrical equipment.

The main requirements to the FCLs are [14]: to be able to withstand distribution and transmission voltage and currents; to have low impedance, low voltage drop and low power loss at normal operation; to have large impedance in fault conditions; to have a very short time recovery and to limit the fault current before the first peak; to properly respond to any fault magnitude and/or phase combinations; to withstand the fault conditions for a sufficient time; to have a high temperature rise endurance; to have a high reliability and long life; to have fully automated operation and fast recovery to normal state after fault removal; to have a low cost and low volume.

According to the technology used, three main types of FCLs can be identified: (a) Superconducting Fault Current Limiters (SFCL), (b) Magnetic Fault Current Limiters (MFCL) and (c) Solid State Fault Current Limiters. These FCLs are broadly classified as inductive and resistive type based on their impedance seen by a fault. In [7], it is illustrated that resistive FCLs can restore the original relay settings with smaller resistance values than inductive FCLs which require higher inductance. In resistive type FCL, current limiting is achieved by introducing resistive impedance in series with the fault impedance. Solid state FCL with resistive limiting impedance, magnetic FCL with a limiting resistor and a resistive SFCL are examples for resistive type FCLs. Fig. 1 shows resistive type SFCL. In Resistive SFCL, the superconducting element is placed inside the cryostat and connected in series with the power line. Fig. 2 shows the shape of fault current without FCL and with FCL[15]. It can be seen that by using the FCL the fault current can be reduced to a small value, once the type of FCL is decided.

Different methods are adopted to connect the fault current limiters and thus to limit the fault current [7]-[10]. A control scheme for determining the impedance of a fault current limiter connected to a distributed generator is suggested in [7]. In this method a resistive fault current limiter is connected which can restore the original relay setting with smaller resistance value than inductive FCLs which require higher inductance. The optimum value of inductance cannot be determined by this method. For multiple DG scenarios, the above method uses same impedance value for the FCLs in series with the DGs, which is not a cost effective method. Optimum location of FCL placement is given in [8]. [13] Proposes a method for lowering the resistance value of SFCL improving the performance of reclosure circuit breaker.

This paper introduces, a new method based on optimization using Genetic Algorithm and is used for finding the optimum resistance of resistive FCL, required to restore the original relay setting. The effectiveness of proposed method in the presence of single and multiple DG existence is also illustrated.

This paper is organised as follows. Section 2 explains the relay coordination problem. Section 3 illustrates the problem formulated for the proposed method of selecting optimum resistance value of resistive fault current limiter. Genetic Algorithm is an optimization technique used for a problem of highly nonlinear nature. The effectiveness of the proposed method is illustrated in section 4 using the results. The advantage of this method is explained in section 5.

2. RELAY COORDINATION PROBLEM

2.1 Determination of operating time of relay

For any distribution system, the aim of the relay coordination problem is to minimize the sum of the operating time of the primary relays. If \(n \) is the total number of relays, then the objective function is given by

\[
\min z = \sum_{i=1}^{n} t_i, f
\]
The constraints for the relay coordination problem are:

- **Limits on plug setting of the relay**: The plug setting (PS) of the relay should be selected in such a way that it should not operate for small amount of overload current and at the same time it should be able to detect even the smallest fault current. As a thumb rule, the minimum and maximum value of plug setting can be fixed as 1.25 and 2 times the maximum load current seen by the relay [7].

\[\text{PS}_i; \min \leq \text{PS}_i \leq \text{PS}_i; \max \]
\[(2) \]

where

- PS$_i; \min$ minimum value of the PS of the relay R_i
- PS$_i; \max$ maximum value of the PS of the relay R_i

- **Limits on time multiplier setting of the relay**: The time multiplier setting (TMS) of the relay also has an upper limit and lower limit which directly affects the operating time of the relay. These limits have been taken between 0.1 and 1.3. These limits are given below.

\[\text{TMS}_i; \min \leq \text{TMS}_i \leq \text{TMS}_i; \max \]
\[(3) \]

where

- TMS$_i; \min$ minimum value of the TMS of the relay R_i
- TMS$_i; \max$ maximum value of the TMS of the relay R_i

- **Constraint on coordination time**: The power system protection is done by a primary relay and a backup relay in each zone. The fault current in a given line is sensed by both the primary relay and backup relay. The backup relay should operate only when the primary relay fails. To ensure this, there should be a minimum time interval between the operating time of the backup relay and that of the primary relay. This time interval known as the coordination time interval (CTI) is the sum of the operating time of the circuit breaker associated with the primary relay and the overshoot time. In this paper, CTI is taken to be 0.2 sec.

\[t_j; f - t_i; f \geq \Delta t \]
\[(4) \]

where

- $t_j; f$ operating time of the backup relay R_j for fault at f
- $t_i; f$ operating time of the primary relay R_i for fault at f

\[\Delta t \]

Relay characteristics: The operating time depends on TMS and PS. In this paper, a nonlinear over current relay characteristic with λ and γ equal to 0.14 and 0.02 respectively is used.

\[t_i = \frac{\lambda(\text{TMS})}{(\text{TMS}_i; \max)^{\gamma}} - 1 \]
\[(5) \]

where

- t_i operating time of the relay R_i for a fault at f
- I$_{\text{relay}}$ fault current seen by the relay

3. PROPOSED METHOD FOR SELECTION OF OPTIMUM RESISTANCE

The idea behind using the FCL in series with the DG, is to introduce an impedance in series with the DG during fault, so that the fault current contribution from the DG is limited. When the fault current contribution from the DG is limited, the original relay settings can be retained for the protection of the distribution system. For a distribution system with multiple DGs connected, there should be a FCL in series with each of the DGs. The impedance of FCL is selected in such a way that the difference in operating time between the backup and primary relay pairs is greater than or equal to the threshold value of coordination time interval [7]. But it is not economical to have very high impedance value for FCLs. This necessitates the need for determining optimum impedance value of FCL which satisfies the coordination time constraint and at the same time is cost effective.

In this paper, resistive type FCLs are considered. Resistive type FCL is used for the protection because the resistance value is lesser compared to the impedance type FCL. The aim of the resistance selection problem should be to minimize the resistance of the FCL in series with the DG. Thus the objective function is to minimize the sum of the resistance of all the FCLs.

\[\min z = \sum_{j=1}^{m} \text{RFCL}_j \]
\[(6) \]

where

- RFCL$_j$ resistance of the FCL connected to jth DG
- m number of DGs connected to the distribution system

Following are the constraints for the resistance selection problem:-
3.1 Constraint on coordination time

The difference between operating time of the entire backup primary relay pairs should be greater than or equal to the threshold value of coordination time interval (0.2 sec). The operating time of the relay is calculated after fixing the value of TMS and PS at the original relay setting. The resistance of the FCL has an impact on the distribution system only during the fault. It has no effect during normal power flow. RFCL is included in the impedance matrix Zbus during fault. This in turn will reduce the value of the fault current. The operating time of the relay depends on the fault current seen by the relay. Thus the operating time becomes a function of RFCL.

\[t_{j;f} - t_{i;f} \geq \Delta t \]

(7)

where
- \(t_{j;f} \) operating time of the backup relay \(R_j \) for fault at \(f \)
- \(t_{i;f} \) operating time of the primary relay \(R_i \) for fault at \(f \)
- \(\Delta t \) threshold value of CTI (0.2 sec)

3.2 Limits on resistance of FCL

FCLs have a fixed resistance value once they are installed into the system. Thus the resistance of FCLs have a upper and lower limit. These limits have been taken between 0 and 1.00 pu.

\[RFCL_{j;min} \leq RFCL_j \leq RFCL_{j;max} \]

(8)

where
- \(RFCL_{j;min} \) minimum value of the FCL’s resistance connected in series with \(j^{th} \) DG
- \(RFCL_{j;max} \) maximum value of the FCL’s resistance connected in series with \(j^{th} \) DG

4. RESULTS AND DISCUSSIONS

The proposed method is tested on the distribution system of the IEEE 30 bus test system [11] shown in Fig. 3. The distribution system is fed from three primary distribution substations (132kV/ 33kV) at bus 10, 12 and 27. The system has 29 directional over current relays having inverse definite minimum time relay characteristics. The DGs considered for test has a capacity of 10 MVA, 0.9 power factor lagging, synchronous type, with a transient reactance of 0.15 pu. Usually DG is connected to the distribution system through transformers. In this paper, a 10 MVA transformer with 0.05 pu transient reactance is considered.

The entire control schematic is shown in Fig. 4. First the relay coordination of IEEE 30 bus distribution system without DG is performed. In order to solve the relay coordination problem, a MATLAB code for performing load flow analysis and short circuit analysis is developed. Load flow analysis of the entire system gives prefault bus voltages and line currents. Short circuit analysis gives fault currents flowing through the lines. Then the near end fault primary and backup relay currents are calculated. Then the directional over current relay coordination problem is solved using the Genetic Algorithm. function available in MATLAB optimization toolbox. The obtained relay settings are shown in Fig. 5.

When a DG is connected to the distribution system, there will be change in both the normal power flow as well as in the fault currents flowing through the system. If the relay settings are kept fixed, some of the backup and primary relay pairs will miscoordinate.

Miscoordination can be in two ways; reduction in the coordination time interval between the backup and primary relay pairs or in certain cases the operating time of backup relay may become lesser than the operating time of the primary relay, that is, a negative CTI value.

![Fig. 3: Distribution system of IEEE 30 bus system.](image)
Fig. 4: Control schematic.

Table 1: Prefault bus voltages without DG.

<table>
<thead>
<tr>
<th>Busno</th>
<th>Voltage Mag. (pu)</th>
<th>Angle (degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.0444</td>
<td>-16.024</td>
</tr>
<tr>
<td>12</td>
<td>1.0378</td>
<td>-16.2764</td>
</tr>
<tr>
<td>14</td>
<td>1.0447</td>
<td>-16.8896</td>
</tr>
<tr>
<td>15</td>
<td>1.0391</td>
<td>-16.1882</td>
</tr>
<tr>
<td>17</td>
<td>1.0216</td>
<td>-16.6284</td>
</tr>
<tr>
<td>18</td>
<td>1.0235</td>
<td>-16.7823</td>
</tr>
<tr>
<td>19</td>
<td>1.0253</td>
<td>-16.5012</td>
</tr>
<tr>
<td>20</td>
<td>1.0272</td>
<td>-16.6611</td>
</tr>
<tr>
<td>21</td>
<td>1.0283</td>
<td>-16.4834</td>
</tr>
<tr>
<td>22</td>
<td>1.0272</td>
<td>-16.6611</td>
</tr>
<tr>
<td>23</td>
<td>1.0283</td>
<td>-16.4834</td>
</tr>
<tr>
<td>24</td>
<td>1.0216</td>
<td>-16.6284</td>
</tr>
<tr>
<td>25</td>
<td>1.0189</td>
<td>-16.4354</td>
</tr>
<tr>
<td>26</td>
<td>1.0012</td>
<td>-16.8415</td>
</tr>
<tr>
<td>27</td>
<td>1.0257</td>
<td>-15.9125</td>
</tr>
<tr>
<td>28</td>
<td>1.0063</td>
<td>-17.1362</td>
</tr>
<tr>
<td>29</td>
<td>0.9945</td>
<td>-18.0146</td>
</tr>
</tbody>
</table>

Table 2: Load current and near end fault current seen by relays.

<table>
<thead>
<tr>
<th>Relay</th>
<th>Load current (A)</th>
<th>Fault current (A)</th>
<th>Relay</th>
<th>Load current (A)</th>
<th>Fault current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>116.5</td>
<td>6426.3</td>
<td>16</td>
<td>105.68</td>
<td>2065.68</td>
</tr>
<tr>
<td>2</td>
<td>162.48</td>
<td>6895.65</td>
<td>17</td>
<td>49.09</td>
<td>2075.71</td>
</tr>
<tr>
<td>3</td>
<td>310.87</td>
<td>6947.92</td>
<td>18</td>
<td>49.09</td>
<td>2768.36</td>
</tr>
<tr>
<td>4</td>
<td>147.62</td>
<td>7141.38</td>
<td>19</td>
<td>123.3</td>
<td>1892.73</td>
</tr>
<tr>
<td>5</td>
<td>135.81</td>
<td>6652.98</td>
<td>20</td>
<td>310.87</td>
<td>2646.87</td>
</tr>
<tr>
<td>6</td>
<td>316.48</td>
<td>5850.61</td>
<td>21</td>
<td>41.77</td>
<td>3810.2</td>
</tr>
<tr>
<td>7</td>
<td>131.57</td>
<td>5742.1</td>
<td>22</td>
<td>72.3</td>
<td>3895.95</td>
</tr>
<tr>
<td>8</td>
<td>28.16</td>
<td>5152.21</td>
<td>23</td>
<td>106.71</td>
<td>2571.97</td>
</tr>
<tr>
<td>9</td>
<td>316.48</td>
<td>2876.69</td>
<td>24</td>
<td>35.58</td>
<td>4187.87</td>
</tr>
<tr>
<td>10</td>
<td>105.68</td>
<td>4841.76</td>
<td>25</td>
<td>84.77</td>
<td>2906.34</td>
</tr>
<tr>
<td>11</td>
<td>98.03</td>
<td>4817.51</td>
<td>26</td>
<td>124.23</td>
<td>4355.32</td>
</tr>
<tr>
<td>12</td>
<td>131.57</td>
<td>2379.88</td>
<td>27</td>
<td>109.34</td>
<td>4355.32</td>
</tr>
<tr>
<td>13</td>
<td>65.82</td>
<td>2914.11</td>
<td>28</td>
<td>65.27</td>
<td>1323.01</td>
</tr>
<tr>
<td>14</td>
<td>65.82</td>
<td>4900.67</td>
<td>29</td>
<td>124.23</td>
<td>914.52</td>
</tr>
</tbody>
</table>

Fig. 5: Time Multiplier Setting (TMS) and Plug Setting (PS) of Relays.

Fig. 6: Time Multiplier Setting (TMS) and Plug Setting (PS) of Relays.
higher than the threshold value of CTI. When there is more than one DG (multiple DG) connected to the system, there should be FCL in series with each DG. In the existing method, all the FCLs were assumed to have equal resistance.

This may result in very high resistance value than what is required, for FCLs placed in certain DG connected buses. But when the proposed method is applied in such a scenario, values of resistances are found to be cost effective than the existing method.
bus 12. With the existing method the value for both the FCL is 3. The proposed method gives an improved resistance value. Fig. 10 shows the case of connecting RFCL at 10 and 19, the values of RFCL obtained by the proposed method is 2.1129pu and 8.1348pu compared to the existing value of 11pu for both FCLs. Thus by using the proposed method, FCLs with lower resistance value can be used.

Table 3: Optimum value of resistance of RFCL with DG at different buses.

<table>
<thead>
<tr>
<th>DG connected buses</th>
<th>Optimum value of FCL(p.u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>2.709</td>
</tr>
<tr>
<td>10</td>
<td>1.0055</td>
</tr>
<tr>
<td>19</td>
<td>13.7019</td>
</tr>
<tr>
<td>10,12</td>
<td>0.8123, 1.8919</td>
</tr>
<tr>
<td>10,19</td>
<td>1.11, 2.1129, 8.1348</td>
</tr>
<tr>
<td>12,19</td>
<td>9.8411, 22.8816</td>
</tr>
<tr>
<td>10,12,19</td>
<td>1.5684, 5.7910, 9.7188</td>
</tr>
</tbody>
</table>

Thus the method is suitable for a system to restore the original relay coordination in a distribution network with multiple DG connected to the system.

5. CONCLUSION

This paper introduces an effective method for determining the optimum resistance of resistive FCLs used to restore the original protection scheme of distribution systems in the presence of DG. An algorithm was developed for determining the initial settings of the relay. Relay coordination problem and selection of optimum value of resistance are determined by optimizing the problem by genetic algorithm. As the cost of FCL depends on its resistance value this method found to be highly useful. This approach is applicable for single and a multiple DG operation. Moreover the proposed method is suitable to reduce the value of resistance of resistive FCLs by significant margin when compared to existing method and thus economical. There is no need to change the protective devices in the presence of DG, as this method retains the relay coordination without altering the existing relay settings.

The future scope of proposed method is to incorporate dual Fault Current Limiter on both Grid side and DG side to retain the existing relay settings in a distribution network. Dual FCL connection increase the power continuity at the buses connected to DG and to maintain the synchronism of new DG introduc-
tion. With dual FCLs, connection of large capacity distributed generators (10MW), as gas turbine generators can be connected to the utility.

References
G. R. Bindu, Associate Professor in Electrical Engineering, College of Engineering, Trivandrum, took her M Tech Degree in 1992 and PhD in 2006 from University of Kerala, India. She worked as an Engineer in KERAFED and also as a faculty in various Engineering Colleges. She is a member of the consultative group of many research committees. Her areas of special interest are electromagnetic field theory, soft computing techniques, control and condition-monitoring of electric drives. She has a number of research publications to her credit including the prestigious IEEE Transactions.